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Binary codes and sets of permutations

We will be considering sets of n-tuples over an
alphabet A, in two important cases:

� A � �
0 � 1 � (binary code);

� A � �
1 ��������� n � , all entries of each word distinct

(set of permutations).

We often impose closure conditions on these sets, as
follows:

� A binary code is linear if it is closed under
coordinatewise addition mod 2.

� A set of permutations is a group if it is closed
under composition.
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Hamming distance

Hamming distance d � x � y� is the number of coordinate
positions where two words differ. It is a metric on the
set of words.

In the binary case,

d � x � y�	� wt � x 
 y���
so for a linear code, minimum distance equals
smallest number of non-zero coordinates of a
non-zero element (minimum weight).

In the permutation group case,

d � x � y�	� n 
 fix � x � 1y���
so, for a permutation group, minimum distance
equals smallest number of points moved by a
non-identity element (minimal degree).
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An apology

This is not really graph theory: the distance between
permutations is not a graph distance, because there
do not exist two permutations at distance 1.

However, it is closely related to the distance d  in the
Cayley graph of the symmetric group with respect to
the set of transpositions: we have

d � g � h��� 2 � d  � g � h��� d � g � h��
 1

for g �� h.

Also, we will be considering the size of the smallest
dominating set in the graph Gn � k with vertex set Sn,
two permutations joined if they agree in at least k

places.
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Some analogies

Linear code Permutation group
length degree
minimum weight minimal degree
weight enumerator permutation character
Tutte polynomial cycle index
basis base
dimension base size
covering radius ??
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Groups as codes

The idea of coding with permutations goes back to
Blake, Cohen and Deza in the 1970s.

Among their suggestions was that the Mathieu group
M12 would be a good code (comparable to a
Reed–Solomon code). It has minimal degree 8, so is
3-error-correcting.

Recently, R. F. Bailey showed that it corrects about
96%of all four-error patterns.

Also, it is easy to decode, using efficient algorithms
for permutation groups. Bailey’s decoding algorithm
uses a covering design to give a collection of 5-sets
such that at least one is disjoint from each error
pattern. Then find the unique element of M12

agreeing with the received word on that 5-set.
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Bases for permutation groups

Let G be a permutation groups. A base is a
sequence of points whose pointwise stabiliser is the
identity. It is irredundant if no point is fixed by the
stabiliser of its predecessors, and is minimal if no
point is fixed by the stabiliser of all the others.

Note that changing the order preserves the
properties of being a base and minimality, but not
necessarily irredundance. However, computationally
it is easy to produce an irredundant base but much
harder to find a minimal base.
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IBIS groups

The following are equivalent for the permutation
group G:

� all irredundant bases have the same number of
elements;

� the irredundant bases are preserved by
reordering;

� the irredundant bases are the bases of a matroid.

A group with these properties is called an IBIS group
(Irredundant Bases of Invariant Size).
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Examples of IBIS groups

Any linear code C of length n gives an IBIS group
with essentially the same matroid, as follows. The set
of points permuted is

�
1 ��������� n ��� GF� 2� ; the group is

the additive group of C; the action is

c : � i � x�	���� i � x � ci ���
The matroid is just the usual matroid of the code with
each element ‘doubled’.

There are many other examples: symmetric and
alternating groups; linear and affine groups; linear
fractional groups; and many sporadic ones.

A group which permutes its irredundant bases
transitively is an IBIS group. Such groups were
determined by Maund (using the Classification of
Finite Simple Groups).
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Polynomials

A permutation group has a cycle index polynomial. If
it is an IBIS group, it is associated with a matroid,
which has a Tutte polynomial.

Sometimes (e.g. for the groups obtained from linear
codes) the cycle index is a specialisation of the Tutte
polynomial; sometimes (e.g. for base-transitive
groups) it is the other way round.

It is possible to define a more general polynomial, the
Tutte cycle index, which specialises to the cycle index
and (in the case of an IBIS group) also to the Tutte
polynomial. Its properties haven’t been investigated
systematically.
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The Tutte cycle index

The Tutte cycle index of a permutation group G on Ω
is

ZT � G�	� 1�
G
� ∑
∆ � Ω

u �G∆ � vb � G � ∆ �! Z � G "∆ #$���

Here G∆ is the setwise stabiliser of ∆, G � ∆  its
pointwise stabiliser, G "∆ #&%� G∆ � G � ∆  the group
induced on ∆ by G∆, and b is the minimum base size.

To get the cycle index: differentiate with respect to u,
put u � v � 1, and replace si by si 
 1.

To get the Tutte polynomial (if G is IBIS): put u � 1

and si � t i. (The result is actually T � M;v� t � 1 � t � 1� .)
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The geometry of bases

We have seen that, in an IBIS group, the irredundant
(or minimal) bases satisfy the matroid basis axioms.

What kind of configuration do they form in more
general cases (when the two kinds may not
coincide)? In particular, we may ask this question in
two special cases:

� What if all minimal bases have the same
cardinality?

� What if the irredundant bases have cardinalities
differing by one?

The greedy algorithm produces an irredundant base
by choosing each base point to lie in an orbit of
largest size of the stabiliser of its predecessors. We
can also ask whether the greedy bases (produced in
this way) have nicer properties than arbitrary
irredundant bases.
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An example: S5 on pairs

An example satisfying both conditions on the
preceding slide is the symmetric group S5 acting on
the ten edges of the complete graph K5.

A minimal base consists of the three edges of a
forest with one isolated vertex and one 4-vertex tree.
The minimal bases are not the bases of a matroid in
this case. (For B � �

12� 23� 34� is a base; I � �
12� 45�

is contained in a base, but it is not possible to add an
element of B to it to form a base.) Note that the
permutation group bases are some of the bases of
the cycle matroid of K5 truncated to rank 3.

The 4-tuple � 12� 45� 23� 34� is an irredundant base
which is not minimal.

The greedy algorithm always produces a minimal
base in this example. (This is not always the case!)
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Base sizes

The largest irredundant base has size at most log2n
times that of the smallest. Indeed, if G has an
irredundant base of size b, then

2b � �
G
� � nb �

The largest base chosen by the greedy algorithm has
size at most � loglogn � c� times that of the smallest
base.

It is conjectured that both these ratios are much
smaller for primitive permutation groups; in particular,
it is conjectured that a greedy base has size at most
9� 8 � o � 1� times the minimum base size in a primitive
group.

There is a relation between base size b � G� and
minimal degree µ � G� . Since any base meets the
support of any non-identity element, it follows that in
a transitive group G we must have

b � G��' µ � G�)( n �
14

Base sizes

Imre Leader asked:

Do the base sizes of a permutation group
form an interval?

The answer is ‘no’ for minimal bases. The group C3
2,

with three orbits of size 2 and one regular orbit of
size 8, has minimal bases of size 1 (a point in the
regular orbit) and 3 (one point in each orbit of size 2)
only.

However, it is true for irredundant bases: if a group
has irredundant bases of sizes m1 and m2, then it has
irredundant bases of all intermediate sizes.

What happens for greedy bases? (Note that the
greedy algorithm is not deterministic since at some
point there may be several largest orbits.)
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Covering radius

Let Sbe a subset of a finite metric space M. The
packing radius of S is the maximum r such that the
balls of radius r with centres at points of Sare
pairwise disjoint; the covering radius is the minimum
R such that the balls of radius R cover M. Under fairly
weak assumptions, r � R.

The covering radius is thus

R � max
x * M

min
y * S

d � x � y�+�
We now look at covering radius of subsets (and
subgroups) of the symmetric group, with the
Hamming distance.
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The covering bound

If �
S
�-, n!�

Bd
� �

where Bd is the number of permutations which move
d or fewer points, then the covering radius of S is at
least d � 1: the balls of radius d don’t contain all the
permutations.

This bound is quite poor. For example, it doesn’t
even show that a set of two permutations has
covering radius n, even though much more is true:

Theorem (Kézdy–Snevily) Any set of at most . n� 2/
permutations in Sn has covering radius n. This is best
possible.

No analogous result holds for binary codes. The
repetition code contains only two codewords, but its
covering radius is only . n� 2/ . The covering bound is
met for odd n.
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Proof

Let Sbe a subset of Sn, with
�
S
� � k. Let Ai be the set

of elements of
�
1 ��������� n � which are not the image of i

under any permutation in S. Then a permutation at
distance n from S is a system of distinct
representatives of the sets A1 ���0����� An; so we will apply
Hall’s Theorem. For I 1 �

1 �������0� n � , put A � I �2�43 i * I Ai.

Clearly
�
Ai
� ( n 
 k for all i; so

�
A � I � � ( �

I
�
if
�
I
� � n 
 k.

Each element j occurs at most k times in the
permutations in S, so at least n 
 k of the sets Ai

contain j. Thus, if
�
I
�-5

k, then j 6 A � I � , and so�
A � I � � � n.

If k � n� 2, then these two possibilities cover all cases.
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An extremal problem

Let f � n � s� be the largest number m with the property
that any set of at most m permutations in Sn has
covering radius n 
 s or greater.

The result of Kézdy and Snevily shows that

f � n � 0�2�7. n� 2/8�
Apart from this and the trivial values f � n � n�2� n!,
f � n � n 
 2�9� n! 
 1, very few exact results are known.

Kézdy and Snevily have made the following
conjecture:

Conjecture If n is even, then f � n � 1�2� n 
 1; if n is
odd, then f � n � 1��( n.
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Latin squares

The rows of a Latin square form a sharply transitive
set of permutations, and every sharply transitive set
arises in this way.

The covering radius of a sharply transitive set in Sn is
at most n 
 1, with equality if and only if the Latin
square has a transversal.

It is known that, for every even n, there is a Latin
square (the Cayley table of the cyclic group) which
has no transversal. Ryser conjectured that every
Latin square of odd order has a transversal. Some
random search, using the Jacobson–Matthews
Markov chain for random Latin squares and Leonard
Soicher’s DESIGN package to search for
transversals, has failed to find a counterexample to
Ryser’s conjecture. Note that the Kézdy–Snevily
conjecture implies Ryser’s.
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Examples

The first Latin square has a transversal, and a
permutation at distance n 
 1 from its rows is shown.
The second Latin square has a partial transversal of
size n 
 1, and a permutation at distance n 
 2 from
its rows is shown.

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4
1 3 5 2 4

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5
1 3 5 2 4 6
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Brualdi’s conjecture and covering radius

Brualdi conjectured that every Latin square has a
partial transversal of size at least n 
 1. Derienko
claimed a proof of this conjecture. However, Wanless
has found a mistake in the proof. The best known
lower bound is n 
;: n by Woolbright.

The Kézdy–Snevily conjecture implies Brualdi’s
conjecture.

If there is a transversal, then the covering radius is
n 
 1; otherwise it is n 
 2 (Cameron and Wanless, in
preparation). This assertion is weaker than Brualdi’s
conjecture.
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Latin squares and f < n = 1 >
In any case, we have the following:

Proposition If there is a Latin square of order n with
no transversal (in particular, if n is even), then
f � n � 1��� n 
 1.

The best lower bound I know for f � n � 1� is . n� 2/	� 1.

Ian Wanless has shown that f � n � 1�2� n for n � 5 � 7 � 9;
that f � 4k � 1 � 1��� 5k � 1; and that, if k is even and
n� 3 , k � n� 2, then f � n � 1�)� n � k 
 1. The method is
to take a Latin square with ‘few’ transversals and add
some permutations meeting each transversal twice.

Thus, for odd n, we have f � n � 1��� 4
3n � O � 1� , with

better results in some cases.
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Permutation groups

More is known about the covering radius of
permutation groups. For example:

Theorem A subgroup of Sn has covering radius n if
and only if all its orbits have size at most n� 2.

Corollary The covering radius of a transitive
permutation group is at most n 
 1.

For regular permutation groups, the bound n 
 1 is
attained if and only if the Cayley table of the group
has a transversal. This is equivalent to the existence
of a complete mapping of the group. A criterion for all
transitive groups is not known.

Corollary The covering radius of a t-transitive
permutation group is at most n 
 t.
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Groups attaining the bound

Problem Which t-transitive permutation groups have
covering radius exactly n 
 t?

For t ( 2, the answer is not completely known, but
such groups are restricted to fairly short lists of
possibilities for t � 2 and t � 3, as well as the
alternating groups (t � n 
 2) and symmetric groups
(t � n).

For some of the groups on these lists, the covering
radius is known to be n 
 t; in other cases this has not
been determined.

A curiosity: Of the 49 multiply-transitive groups of
degree at most 12, all have even covering radius
except two (these are AΓL � 1 � 8� and AGL � 2 � 3� , both
with covering radius 5).
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The cases t ? 2 = 3
For t � 2, groups meeting the bound are among the
list

� G � AΓL � 1 � q� , where q is a power of 2;

� ASL � 2 � q��� G � AΓL � 2 � q� , where q is a power
of 2;

� G has a normal subgroup PSL� 2 � q� or PSU� 3 � q�
(for q an odd prime power) or a Ree group 2G2 � q� (for
q an odd power of 3).

For t � 3, they satisfy

PGL� 2 � q��� G � PΓL � 2 � q���
where q is a power of 2.

We note that groups meeting the bound do have
even covering radius! A direct proof would be nice.
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An example: Suzuki groups

As an example, I outline the proof that the 2-transitive
Suzuki groups do not have covering radius n 
 2.

In a transitive group G, the average distance of the
elements from an arbitrary permutation is n 
 1 (this
is an analogue of the Orbit-Counting Lemma). So, if
the covering radius is n 
 1 and d � g � G�2� n 
 1, then
d � g � h�2� n 
 1 for all h 6 G.

It follows that, if G is 2-transitive and d � g � G�2� n 
 2,
then d � g � h�9� n 
 2 or n for all h 6 G, with half the
elements taking each value. The same holds for any
uniformly transitive subset of G.

If G � Sz� q� , then the involutions in G form a uniformly
transitive subset of odd cardinality, so this is not
possible.
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Covering radius of PGL< 2 = q >
The covering radius of the group PGL� 2 � q� of linear
fractional transformations over GF� q� is@AAAB AAAC

q 
 2 if q is a power of 2,
q 
 3 if q D 3 or 5 mod 6,
q 
 3 � q 
 4 if q D 1 mod 6.

or q 
 5

The upper bounds follow from arguments like those
above. For the lower bounds, consider first q even.
Then x �� x2 is a permutation, and it is easily shown
that it agrees with any linear fractional transformation
in at most 3 points (the equation x2 �E� ax � b����� cx � d �
is a cubic). Similarly, if q is not congruent to 1 mod 6,
we use the permutation x �� x3.

Question What is the covering radius of PGL� 2 � q� for
q D 1 mod 6? (It is known to be q 
 3 for q � 7 � 13, and
either 15 or 16 for q � 19.)
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A geometric formulation

Consider the Minkowski plane or ruled quadric over
GF� q� Let Sbe a set of q � 1 points which contains
one point on each generator. What is the smallest
value of s for which such a set exists with at most s

points on each conic?

The covering radius of PGL� 2 � q� is q � 1 
 s, where s

is the above minimal value. Hence the answer is
s � 3 for q even, s � 4 for q odd and not congruent to
1 mod 6, and 4 � s � 6 in the remaining cases.
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Packing and covering

We noted that the packing radius r and covering
radius R satisfy r � R under mild conditions. Is R

bounded above by a function of r?

No such bound can hold in general, and we are led to
restrict the question to primitive permutation groups.

In this case, the existence of such a bound was
proved by Jordan in the nineteenth century. (Jordan
actually showed that the degree of a primitive group
is bounded by a function of its minimal degree.)

However, a construction based on Steiner triple
systems shows that no linear bound can hold in
general.
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Analogues of extremal set theory

Let A 1 �
0 ��������� n 
 2 � . A subset Sof Sn is

A-intersecting if fix � gh� 1 ��6 A for all g � h 6 S (that is, all
Hamming distances in Sare of the form n 
 a for
a 6 A).

We write F � n � A� for the cardinality of the largest
A-intersecting set of permutations of

�
1 ��������� n � .

Moreover, we write for short F � n �9� s� and F � n �	( s�
with the obvious meaning.

Clearly,

F � n ��� s��� n � n 
 1�&'�'�'�� n 
 s � 1���
with equality if and only if a sharply s-transitive set
exists. Such sets are equivalent to Latin squares for
s � 1, but are quite rare for s

5
1. For example, a

sharply 2-transitive set is ‘equivalent’ to a projective
plane of order n; examples are known only for prime
powers n.
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Intersecting sets of permutations

Deza and Frankl showed that

F � n �	( 1�	�F� n 
 1� ! �
Very recently, Cameron and Ku showed that an
intersecting set of permutations which attains this
bound must be a coset of the stabiliser of a point in
the symmetric group.

In view of this, it is natural to conjecture that, for
n ( n0 � s� , we have

F � n �2( s�	�F� n 
 s� ! �
and that a set meeting the bound is a coset of an
s-point stabiliser. However, even the bound has only
been proved in very special cases (for example,
s � 2, n a prime power, using the existence of sharply
2-transitive sets in this case).
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