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Generators of subgroups

d'(G) is the maximum of d(H) over all subgroups
H<G.

Mclver and Neumann showed that d’(S,) = |n/2] for
n > 3. This is a lower bound, as is shown by

((1,2),(3,4),...,(2m—1,2m))

where m= |n/2|. Showing it is an upper bound is
harder!

Jerrum gave a more elementary proof that
d’(Sy) < n—1. In fact he showed that any subgroup of
S has a “nice” generating set with the properties

e a “nice” generating set contains at most n—1
elements;

e if Sis “nice” and g € S, then we can compute a
“nice” generating set for (S,g) efficiently.

This can be used to compute a base and strong
generating set of an arbitrary subgroup in polynomial
time.
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Order, composition factors, generators
The order of &, is n! (trivial).

The number of composition factors of S, is 2 for
n+# 2,4 (known to Galois?).

d(G) is the minimum number of generators of the
group G. We have d(S,) = 2 (elementary: for
example, (1,2,...,n) and (1,2) generate S).

So the symmetric group is both very big and very
small!

Length of subgroup chain

[(G) is the length of the longest chain of subgroups in
G.

Note that d’(G) < I(G) for any group G; this was the
original motivation for studying | (G) (Babai).

If N is a normal subgroup of G, then
[(G) =1(N)+1(G/N). Thus we only have to compute
[(S) for all simple groups S

This has been done for many families of simple
groups (Solomon, Turull).




Length of subgroup chain

Cameron, Solomon and Turull showed (using CFSG)
that

1(Sh) =[3n/2] =b(n) - 1,

where b(n) is the number of ones in the base 2
representation of n. So d'(Sy) < [(S) forn> 4.

It is easy to find a subgroup chain whose length is
the right-hand side of the above formula. To show
that no longer chain is possible, we take a chain

&>G>...

and analyse the possibilities for G, ultimately using
the O’Nan—Scott Theorem and CFSG.

Probably the use of CFSG here can be avoided!

Independent generating sets

Whiston proved that p(S,) = u*(S,) =n—1. Again, the
lower bound is straightforward (the set

{(1,2),(2,3),...,(n=1,n)}
is an independent generating set). For the upper
bound, CFSG is required; if G is the subgroup
generated by all but one element of an independent
generating set of largest size, then W(Sy) < Y(G) +1,
and we have to analyse G.

Cameron and Cara used Whiston’s result to
determine all independent generating sets of S, of
size n—1. There are two types; one consists of
transpositions corresponding to the edges of a tree;
the other contains one transposition, the other
elements being 3-cycles or double transpositions.

Independent generating sets

A set SC Gis independent if s¢ (S\ {s}) forall se S
that is, no element of s can be written as a word in
the remaining elements.

K*(G) is the size of the largest independent subset of
G; and (G) is the size of the largest independent
generating set of G. Clearly y(G) < pu*(G). Equality
holds in abelian groups, p-groups, dihedral groups,
and (as we will see) symmetric groups, but not in
general. (Whiston gives counterexamples in PSL(2, p)
for suitable primes p.) It would be interesting to know
more about this! Also, y(G) is the size of the largest
minimal (w.r.t. inclusion) generating set of G.

The parameter Y(G) occurs in the paper of Diaconis
and Saloff-Coste on the rate of convergence of the
product replacement algorithm on a finite group. The
time required until the distribution is near-random
depends very sensitively on p(G).

Another application is given later.

Coset geometries

Let G be a group, and (G;j : i € 1) a family of
subgroups of G. for JC 1, let Gy = j¢3Gj. Suppose
that the following three conditions hold:

(G1) The subgroups Gj, for J C I, are all distinct.

(G2) IfJCl and |J| < |I| -1, then
Gy= <GJU{k} kel \J>

(G3) If a family (Gjx; : j € J) of right cosets have
pairwise non-empty intersection, for j € J, then there
is an element of G lying in all these cosets.

The coset geometry C(G, (Gj :i € 1)) has type set I;
the varieties of type i are the right cosets of Gj, and
two varieties are incident if their intersection is
non-empty. The group G acts as a flag-transitive
automorphism group of the geometry.




Coset geometries

The coset geometry is called residually weakly
primitive, or RWPri, if the following condition holds:

(G4) For any J C I, there exists k € I \ J such that
Gyu{ky is @ maximal subgroup of G;.

This means that the group G; acts primitively on the
varieties of at least one type in the residue of the
standard flag of type J.

The rank of a coset geometry for G is at most p*(G),

while the rank of an RWPri coset geometry is at most
H(G). In general, it is not true that equality holds, and
so we have two new measures of the size of a group:

e the maximum rank of a coset geometry;

e the maximum rank of an RWPri coset geometry.
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Other measures?

Both I(G) and p*(G) are determined by the subgroup
lattice £(G) of G; they are, essentially, the longest
chain and the largest Boolean lattice, respectively,
which can be embedded in £(G). These measures
can easily be generalised: we can ask about
embedding other posets in the subgroup lattice of G.
One natural measure which springs to mind is the
size of the largest antichain in £(G).

Needless to say, there are many other measures
which have been used in different circumstances: the
number of conjugacy classes (the Monster is a
remarkably small group in this sense); the degree of
the smallest faithful permutation representation, or
matrix representation (important if we have to do
computation in the group); and so on.
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Coset geometries

Cameron and Cara showed that all the minimal
generating sets for $, of size n— 1 give rise to RWPri
coset geometries. Hence we conclude:

The maximum rank of a coset geometry for &, is
n—1. Any geometry which meets this bound is
RWPri, and all such geometries are known.

The diagram of the geometry corresponding to an
independent generating set of the first type
(transpositions corresponding to the edges of a

tree T) is the line graph of T. For the second type,
the unique transposition in the set corresponds to an
isolated node of the diagram.
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Other measures?

One can also look at the relation between different
measures, or between the measure of a group and a
subgroup or quotient. We have seen examples of
both of these: e.g. d’(G) <I(G) and p*(G) < I(G); and
[(G) =1(N)+1(G/N) for any normal subgroup N of G.

A similar relation used by Whiston is

H(G) < U(G/N)+ 1 (N)
for any normal subgroup N of G. It would be
interesting to know when the bound is met.

Also, given a measure m, we can define n'(G) to be
the maximum of m(H) over all subgroups H of G (as
we did to get from d to d’). If the measure mis not
monotonic, this will give us something new; but m' will
then of course be monotonic.
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