Quantum Error Correction

Peter J. Cameron

School of Mathematical Sciences
Queen Mary and Westfield College London E1 4NS, U.K.
p.j.cameron@qmw.ac.uk

MathFIT London, 5 April 2000

Why quantum computing?

In 1990 Peter Shor proved the following theorem.

Theorem 1 There exists a randomized algorithm for integer factorization which runs in polynomial time on a quantum computer.

On a classical computer, primality testing is 'easy' but factorization is 'hard'. This is the basis of the RSA cryptosystem.

Roughly speaking, a quantum computer is highly parallel; we can run exponentially many computations at the same time, and only those which terminate with a positive result will produce output.

Classical v quantum

In a classical computer, each bit of information is stored by a transistor containing trillions of electrons.

On a quantum computer, a single electron or nucleus in a magnetic field carries a bit of information. Interaction with the environment is much more serious.

Decoherence puts a limit on the space and time resources available to a quantum computer.

In order to get round this limit, the computer must be fault tolerant, that is, it must have error correction built in; and the error correction circuits should not introduce more errors than they correct!

Classical error correction

Let $F=\mathrm{GF}(2)=\{0,1\}$. An element of F is a bit of information. A word of length n (an element of $V=F^{n}$) contains n bits of information.

A code is a subset C of V such that any two elements of C are far apart. We only use codewords to carry information; if few errors occur, the correct codeword is likely to be the nearest.

For $v, w \in V$, the Hamming distance $d(v, w)$ is the number of coordinates i such that $v_{i} \neq w_{i}$.

If the minimum Hamming distance between distinct elements of C is d, then C can correct up to $\lfloor(d-1) / 2\rfloor$ errors. So an error pattern is correctable if it has weight at most $\lfloor(d-1) / 2\rfloor$.

The weight of v is $\mathrm{wt}(v)=d(v, 0)$. If C is linear, then its minimum distance is equal to its minimum weight.

States and observables

The state of a quantum system is a unit vector in a complex Hilbert space. An observable is a self-adjoint operator on the state space, whose eigenvalues are the possible values of the observable.

The interpretation of the coefficients a_{i} of a state vector with respect to an orthonormal basis of eigenvectors of an observable is that $\left|a_{i}\right|^{2}$ is the probability of obtaining the corresponding eigenvalue as the value of a measurement.

Quantum errors

An error, like any physical process, is a unitary transformation of the state space. The space of errors to a single qubit is 4-dimensional, and is spanned by the four unitary matrices

I	(no error)	$e_{0} \mapsto e_{0}, e_{1} \mapsto e_{1}$
X	(bit error)	$e_{0} \mapsto e_{1}, e_{1} \mapsto e_{0}$
Z	(phase error)	$e_{0} \mapsto e_{0}, e_{1} \mapsto-e_{1}$
$Y=i X Z$	(combination)	

Note that I, X, Y, Z are the Pauli spin matrices.

We can write $X e_{v}=e_{v+1}, Z e_{v}=(-1)^{v} e_{v}$.

Bits and qubits

The quantum analogue of a bit of information is called a qubit. It is the state of a system in a 2-dimensional Hilbert space \mathbb{C}^{2} spanned by e_{0} and e_{1}, where e_{0} and e_{1} are eigenvectors corresponding to the eigenvalues 0 and 1 of the qubit.

Thus, the qubit is represented by the self-adjoint matrix

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

relative to this basis. So in the state $\alpha e_{0}+\beta e_{1}$, the probabilities of measuring 0 and 1 are $|\alpha|^{2}$ and $|\beta|^{2}$ respectively.

An n-tuple of qubits is an element of the tensor product

$$
\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}=\mathbb{C}^{2^{n}}
$$

a basis for this space consists of all vectors

$$
e_{v}=e_{v_{1}} \otimes \cdots \otimes e_{v_{n}}
$$

for $v=\left(v_{1}, \ldots, v_{n}\right) \in V$.

Quantum errors

Now the errors to n qubits act coordinatewise, and are generated by $X(a)$ and $Z(b)$ for $a, b \in V$, where

$$
X(a): e_{v} \mapsto e_{v+a}, \quad Z(b): e_{v} \mapsto(-1)^{v . b} e_{v}
$$

These generate the error group, an extraspecial 2-group E of order $2^{2 n+1}$ with centre $Z(E)= \pm I$.
$\bar{E}=E / Z(E) \cong \mathrm{GF}(2)^{2 n}$; we represent the coset $\{ \pm X(a) Z(b)\}$ by $(a \mid b)$.

On \bar{E}, we have a quadratic form q given by

$$
\left((X(a) Z(b))^{2}=(-1)^{q(a \mid b)} I\right.
$$

and associated symplectic form $*$ given by

$$
\left[X(a) Z(b), X\left(a^{\prime}\right) Z\left(b^{\prime}\right)\right]=(-1)^{(a \mid b) *\left(a^{\prime} \mid b^{\prime}\right)} I
$$

Quantum codes

Let S be an abelian subgroup of E such that \bar{S} is totally singular (w.r.t. q). Then under the action of S, the state space \mathbb{C}^{2} is the sum of $|S|$ orthogonal eigenspaces. Let Q be an eigenspace. Then

- the error group permutes the eigenspaces regularly;
- the stabilizer of Q is S^{\perp};
- S acts trivially on Q.

Thus, errors in S^{\perp} are undetectable, while errors in S have no effect. So if \mathcal{E} is a subset of E with the property

$$
e, f \in \mathcal{E} \Rightarrow f^{-1} e \notin S^{\perp} \backslash S,
$$

then errors in \mathcal{E} can be corrected. (If two such errors have undetectably different effect, then they have the same effect!)

GF(4) to quantum

The field GF(4) can be written as

$$
\{a \omega+b \bar{\omega}: a, b \in \mathrm{GF}(2)\} .
$$

So we have a bijection θ between \bar{E} and $\mathrm{GF}(4)^{n}$, given by $(a \mid b) \mapsto a \omega+b \bar{\omega}$.

Moreover, if a subspace of $\mathrm{GF}(4)^{n}$ is totally isotropic with respect to the Hermitian inner product on $\operatorname{GF}(4)^{n}$, then its image in \bar{E} is totally singular.

Also, the quantum weight of $(a \mid b)$ is equal to the Hamming weight of $a \omega+b \bar{\omega}$.

So good GF(4)-codes can be used to construct good quantum codes.

Quantum error correction

The subspace Q is our quantum code. If $|S|=2^{r}$, then $\operatorname{dim}(Q)=2^{n-r}$; we can think of Q as consisting of $n-r$ qubits "smeared out" over the space of n qubits.

Define the quantum weight of $(a \mid b) \in \bar{E}$ to be the number of coordinates i such that either a_{i} or b_{i} (or both) is non-zero, that is, some error has occurred in the i th qubit.

By taking \mathcal{E} to consist of all errors with quantum weight at most $\lfloor(d-1) / 2\rfloor$, Calderbank, Rains, Shor and Sloane proved the following analogue of classical error correction:

Theorem 2 Suppose that the minimum quantum weight of $\bar{S}^{\perp} \backslash \bar{S}$ is d. Then Q corrects $\lfloor(d-1) / 2\rfloor$ qubit errors.

