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Random graphs

Graph: Vertices, edges; no loops or multiple edges.
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Random: Choose edges independently with
probability 1

�
2 from all pairs of vertices. (That is, toss

a fair coin: Heads = edge, Tails = no edge.)
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Random graphs

For finite random graphs on n vertices,

� every graph on n vertices occurs with non-zero
probability;

� the more symmetric the graph, the smaller the
probability.
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For infinite graphs, the picture is very different . . .
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The random graph

Theorem 1 (Erdős and Rényi) There is a countable
graph R with the property that a random countable
graph (edges chosen independently with probability
1
2) is almost surely isomorphic to R.

The graph R has the properties that

� it is universal : any finite (or countable) graph is
embeddable as an induced subgraph of R;

� it is homogeneous: any isomorphism between
finite induced subgraphs of R extends to an
automorphism of R.
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Sketc h proof

Proper ty ( � ) Given finite disjoint sets U � V of
vertices, there is a vertex joined to everything in U

and to nothing in V .

Step 1 With probability 1, a countable random graph
has property ( � ).
Uses the fact that a countable union of null sets is
null.

Step 2 Any two countable graphs with property ( � )
are isomorphic.

A standard ‘back-and-forth’ argument.
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Constructions of R

Construction 1. Take any countable model of ZF,
and join x to y if x 
 y or y 
 x.

In fact we don’t need all of ZF, only the null set,
pairing, union, and foundation axioms. So the
standard model of finite set theory (the set N, with
x 
 y if the xth binary digit of y is 1) gives an explicit
construction (Rado).

Construction 2. Let � 1 be the set of primes
congruent to 1 mod 4. Join p to q if p is a quadratic
residue mod q.

If we use instead ��� 1, the set of primes congruent to� 1 mod 4, we obtain the random tournament.
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Univer sal homog eneous structures

Theorem 2 (Fraı̈ssé) R is the unique countable
universal homogeneous graph.

There are many other examples to which Fraı̈ssé’s
theorem or variants apply:

� the random tournament, digraph, hypergraph,
etc.;

� the universal total order � (Cantor), partial order,
etc.;

� the universal triangle-free graph (Henson),
N-free graph (Covington), locally transitive
tournament (Lachlan), two-graph, etc.;

� the universal locally finite group (Hall), Steiner
triple system (Thomas), etc.
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Measure and categor y

Measure theory and topology provide two concepts
for saying that a set A takes up ‘almost all’ of the
sample space: it may be of full measure (the
complement of a null set) or residual (the
complement of a meagre or first category set).

Sometimes these concepts agree (e.g. the random
graph is ‘ubiquitous’ in both senses), sometimes they
don’t (e.g. Henson’s universal triangle-free graph is
residual, but a random triangle-free graph is almost
surely bipartite).
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More generall y . . .

There is a more general and powerful version due to
Hrushovski. It constructs pseudoplanes,
distance-transitive graphs, and examples related to
sparse random graphs (among other things).

See the survey article by Wagner in Kaye and
Macpherson, Automorphisms of First-Order
Structures.
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Homog eneous graphs

Theorem 3 (Lachlan and Woodr ow) The countably
infinite homogeneous graphs are the following:

(a) the disjoint union of m complete graphs of size n,
where m and n are finite or countable (and at
least one is infinite);

(b) the complements of the graphs under (a);

(c) the Fraı̈ssé limit of the class of graphs containing
no complete subgraph of size r, for given finite
r � 3;

(d) the complements of the graphs under (c);

(e) the random graph (the Fraı̈ssé limit of the class
of all finite graphs).
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Homog eneous digraphs

Cherlin has determined all the countable
homogeneous directed graphs. There are
uncountably many analogues of (c), but instead of
excluding one complete graph we have to exclude an
arbitrary antichain of tournaments. (The examples
are due to Henson.)

There are also a few sporadic ones. For example,
there are just three homogeneous tournaments: the
linearly ordered set � , the coutable ‘local order’, and
the random tournament.
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First-or der graph proper ties

The graph R ‘controls’ first-order properties of finite
random graphs.

Theorem 4 (Glebskii et al.) A first-order sentence in
the language of graphs holds in almost all finite
graphs if and only if it holds in R.

In particular, there is a zero-one law for first-order
sentences.

Of course, most interesting graph properties are not
first-order!
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Indestructibility

R is unchanged by the following operations:

� deleting finitely many vertices;

� adding or removing finitely many edges;

� complementation (interchanging edges and
non-edges);

� switching with respect to a finite set (see later).

In addition, the countable random graph with any
given edge-probability p satisfying 0 � p � 1 is
isomorphic to R.
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Pigeonhole proper ty

A structure X has the pigeonhole property if,
whenever X is partitioned into two parts, one of the
parts is isomorphic to X .

Theorem 5 The countable graphs with the
pigeonhole property are the complete graph, the null
graph, and the random graph.

Theorem 6 (Bonato–Delic) The countable
tournaments with the pigeonhole property are the
random tournament, ordinal powers of ω, and their
converses.
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Switc hing

The operation of switching a graph Γ with respect to
a set X of vertices, as defined by Seidel, works as
follows: interchange edges and non-edges between
X and its complement, leaving edges within and
outside X unaltered.

Let ��� Γ � be the set of triples of vertices of Γ
containing an odd number of edges.

Theorem 7 Graphs Γ1 and Γ2 on the same vertex
set are related by switching if and only if��� Γ1 ������� Γ2 � .
In different language, this says that

H2 � simplex ��� � 2 ����� 0  
Switching has many applications in finite and
Euclidean geometry, group theory, strongly regular
graphs, etc.
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Reducts

A subgroup of the symmetric group is closed in the
topology of pointwise convergence if and only if it is
the automorphism group of a first-order structure
(which can be taken to be a homogeneous relational
structure).

Theorem 8 (Thomas) There are five closed
subgroups of Sym � R � containing Aut � R � , viz. Aut � R � ,
the group of automorphisms and anti-automorphisms
of R, the group of switching-automorphisms of R, the
group of switching-automorphisms and
anti-automorphisms of R, and Sym � R � .
Similar results are known in a few other cases, e.g. �
(as ordered set), random hypergraphs.
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Reconstruction

The perfect graph theorem (Lóvasz) asserts that the
complement of a perfect graph is perfect.

The P4-structure of a graph is the collection of
subsets which induce paths on four vertices. The
semi-strong perfect graph theorem (Reed) asserts
that a graph which has the same P4-structure as a
perfect graph is perfect.

Cameron and Martins proved that for almost all finite
graphs G, the only graphs with the same P4-structure
as G are G and its complement. An analogous
statement is true with any finite collection ! of finite
graphs in place of " P4 # : for almost all finite graphs Γ,
any graph having the same ! -structure as Γ is
related to it by one of five equivalence relations
corresponding to Thomas’ five reducts. (We saw this
already for switching, where ! is the class of graphs
with three vertices and an odd number of edges.)

The proof uses Theorems 8 and 4, and some
elementary model theory.
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Cyclic automorphisms

Let σ be a cyclic automorphism of the countable
graph Γ, permuting the vertices in a single cycle.
Then we can label the vertices with � , so that σ is the
cyclic shift x $% x & 1.

Let S �'" x ( 0 : x ) 0 # . Then S determines

� Γ up to isomorphism;

� σ up to conjugacy in Aut � Γ � .
Now for almost all random choices of S, we find that Γ
is isomorphic to R. As a corollary, we see immedately
that R has 2ℵ0 conjugacy classes of cyclic
automorphisms.
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Cycle structure

Truss gave a characterisation of all cycle structures
of automorphisms of R. For example, R admits a
cyclic automorphism, and an automorphism which
fixes a vertex v and has two infinite cycles on the
remaining vertices (the neighbours and
non-neighbours of v, respectively).

The following curious property holds:

Note If a permutation g of a countable set leaves
some copy of R invariant, then the probability that a
random g-invariant graph is isomorphic to R is strictly
positive.

A random g-invariant graph is obtained by deciding
independently whether each orbit of * g + on 2-sets
consists of edges or non-edges.

It is not known whether the analogous property for
arbitrary permutation groups on a countable set is
true or false.
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Generic automorphisms

An element g of a group G is generic if the conjugacy
class gG containing g is residual in G. (We have to
use Baire category here since there is no natural
measure on the infinite symmetric group.)

Truss showed that R admits generic automorphisms.
These have infinitely many cycles of each finite
length but (surprisingly) no infinite cycles.

Hodges, Hodkinson, Lascar and Shelah showed that
R admits generic n-tuples of automorphisms (that is,
Aut � R � n has generic elements) for every positive
integer n. If � g1 �, - , ,� gn � is generic, then * g1 �- , , -� gn + is
a free group of rank n, all of whose orbits on R are
finite.

On the next slide we have the other extreme . . .
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Other free subgr oups

Theorem 9 (Bhattac harjee and Macpher son)
There exist automorphisms f � g of R such that

(a) f � g generate a free subgroup of Aut � R � ,
(b) f has a single cycle on R, which is infinite,

(c) g fixes a vertex v and has two cycles on the
remaining vertices (namely, the neighbours and
non-neighbours of v),

(d) the group * f � g + is oligomorphic, and transitive on
vertices, edges, and non-edges of R, and each of
its non-identity elements has only finitely many
cycles on R.

A permutation group is oligomorphic if the
automorphism group has only finitely many orbits on
n-tuples for all natural numbers n.
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B-gr oups

A B-group is a group X with the property that any
primitive permutation group G which contains the
right regular action of X is doubly transitive.

Theorem 10 For almost all n, every group of order n

is a B-group.

The proof uses the Classification of Finite Simple
Groups.

By contrast, no countable B-groups are currently
known.
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Countab le non-B-gr oups

A square-root set in a group X is a set of the form.
a �'" x : x2 � a #  

It is non-principal if a /� 1.

Theorem 11 (Cameron and Johnson) Suppose that
the countable group X is not the union of finitely
many translates of non-principal square-root sets.
Then a random Cayley graph for X is isomorphic to
R. Hence X is not a B-group.

In particular, R is a Cayley graph for the infinite cyclic
group � . This gives another proof that R admits cyclic
automorphisms.
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Countab le non-B-gr oups

Theorem 12 There is no countable abelian B-group.

Proof . Let X2 �0" x 
 X : x2 � 1 # . If


X : X2



is infinite,

then Theorem 11 applies. Otherwise, X has finite
exponent and so X � Y 1 Z with Y and Z infinite; then
X is contained in the primitive group Sym � N �32 Sym � 2 �
(with the product action).

Theorem 13 A countable simple group with more
than two conjugacy classes is not a B-group.

Proof . Consider " x $% a
� 1xb : a � b 
 X # .
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Problems on B-gr oups

� Can one use other countable homogeneous
structures to find further non-B-groups? What
about Hrushovski’s method?

� Are there any countable B-groups?

� Is the hypothesis of Theorem 11 necessary?
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The small inde x proper ty

A countable structure M has the small index property
if any subgroup of index smaller than 2ℵ0 in Aut � M �
contains the pointwise stabiliser of a finite set of
points.

If M has the small index property, then the topology
on Aut � M � (induced by the topology of pointwise
convergence in the symmetric group) is determined
by the group structure: a subgroup is open if and only
if it has index less than 2ℵ0.

A countable structure M has the strong small index
property if any subgroup of index smaller than 2ℵ0 in
Aut � M � lies between the pointwise and setwise
stabiliser of a finite set of points.
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Small inde x proper ty for R

Theorem 14 The random graph has the (strong)
small index property.

The small index property was shown by Hodges,
Hodkinson, Lascar and Shelah, who showed that
Aut � R � has generic n-tuples of elements (i.e. there is
a single conjugacy class which is comeagre in
Aut � R � ).
Corollar y Aut � R � is not isomorphic to the
automorphism group of any other countable
homogeneous graph or digraph.

Indeed, Aut � R � cannot act transitively on vertices,
edges and non-edges on any other countable graph
or digraph except R.
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Footnote: topology

After the Barcelona talk, A. Vershik drew my attention
to the universal homogeneous metric space
constructed by P. S. Urysohn in his last paper. There
should be interesting parallels to be drawn here!

A. M. Vershik, The universal Urysohn space, Gromov
metric triples and random metrics on the natural
numbers, Russian Math. Surveys 53 (1998),
921–928.

See also the work of Neumann on the ‘rational
world’, the countable 0-dimensional space without
isolated points (realised as � , and characterised by
Sierpiński).

P. M. Neumann, Automorphisms of the rational world,
J. London Math. Soc. (2) 32 (1985), 439–448.

More on this later, hopefully.
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R. L. Graham), Springer, Berlin, 1996.

P. J. Cameron. and K. W. Johnson, An essay on
countable B-groups, Math. Proc. Cambridge Philos.
Soc. 102 (1987), 223–232.

29

P. J. Cameron and C. Martins, A theorem on
reconstructing random graphs, Combinatorics,
Probability and Computing 2 (1993), 1–9.

G. Cherlin, The classification of countable
homogeneous directed graphs and countable
homogeneous n-tournaments, Memoirs Amer. Math.
Soc. 621, American Mathematical Society,
Providence, RI, 1998.

J. Covington, A universal structure for N-free graphs,
Proc. London Math. Soc. (3) 58 (1989), 1–16.
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