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J. P. Morgan and L. H. Soicher

http://designtheory.org

Slide 2

Designs on the Web: aims

• Encourage communication between practi-
tioners of combinatorial and statistical design
theory; make up-to-date research in combina-
torics easily available to statisticians and vice
versa.
• Provide a standard interchange format (in-
dependent of particular software) for designs
and their properties: the “External Represen-
tation”.
• Provide a database of designs usable by both
practising statisticians and combinatorial re-
searchers.
• Provide a repository of software and documen-
tation and a discussion forum for all aspects of
design theory.
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What is a design?

We have a set T of treatments which we wish to
compare, and a set Ω of plots or experimental
units to which the treatments may be applied.
A design is a function F : Ω→ T (so that F (ω)
is the treatment applied to plot ω).
If T and Ω are completely unstructured, simply
use each treatment the same number of times
(as near as possible).
The existence of structure on T and Ω compli-
cates matters!
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A design

Suppose that we have to test seven different
types of fertiliser. Three plots on each of seven
farms are available. We use each fertiliser
on three plots; the experimental design is the
choice of which three plots should receive the
same fertiliser.
Clearly it would not be a good idea to use one
fertiliser on all three plots of one farm; then the
effect on the yield caused by the fertiliser could
not be distinguished from the effect caused by
farm. (The effects are confounded.)
The best design is in fact the following one,
which mathematicians recognise as the projec-
tive plane of order 2:
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Treatment and plot structures

For example, one treatment may be a placebo,
or the “standard” treatment against which the
others are to be compared; or the treatments
may have a number of factors which can be ap-
plied at different levels (fertiliser dose, watering,
planting time, etc.) These are important but for
now we disregard them. If T is homogeneous,
we can replace the function F by a partition of
Ω (and assign one treatment to each part).
Plot structure arises because the set of plots is
not homogeneous. For example, we may have
several plots on each of a number of farms in dif-
ferent geographical areas; soil fertility or mois-
ture content may vary across a field; one plant
may shade another; experiments over a period
of time are subject to daily or seasonal effects;
and drugs may have carry-over effects.

Slide 6

Block designs

The simplest plot structure is a system of
blocks, where plots in a block are more alike
than those in different blocks (as in the farms
example). Thus, the blocks form a partition of
Ω. So a block design consists of a set Ω with
two partitions, corresponding to treatments and
blocks.
The block partition is given, and we have to
choose the treatment partition so that informa-
tion can be recovered about the treatments as
efficiently as possible – this means that the vari-
ances of the estimators of treatment differences
should be as small as possible.
In the worst case, if we applied each treatment
on only one farm, we couldn’t separate treat-
ment effects from geographical effects.
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Representing a design

R1: A set of plots with two partitions (as
above).
R2: Bipartite graph, vertices are points (treat-
ments) and blocks, joined if the treatment ap-
pears in the block, labelled with the number of
times it appears.
R3: Set of points, each block is a multiset of
points, so the blocks form a multiset of multi-
sets.
R′3: Dual to R3.
R4: Bipartite graph with vertices and edges la-
belled. Edge labels as above; vertex labels de-
note the number of repetitions of blocks and/or
points.
The design is called binary if no treatment oc-
curs more than once in a block (so edge multi-
plicities are all 1).
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Example

Suppose we have six plots, 1, 2, 3, 4, 5, 6, which
fall into two blocks α = {1, 2, 3, 4} and β =
{5, 6}. We have two treatments A and B, and
apply A to plots 1, 3, 5 and B to plots 2, 4, 6.
These two partitions form representation R1.
It has 8 automorphisms.
R2: Complete bipartite graph on vertices
{A,B} and {α, β}, with multiplicies 2 on Aα
and Aβ and 1 on the other two edges. This has
2 automorphisms.
R3: Point set {A,B}, blocks [A,A,B,B] and
[A,B]. Again 2 automorphisms.
R′3: Point set {α, β}; block {α, α, β} with mul-
tiplicity 2. Trivial automorphism group.
R4: Complete bipartite graph with vertex α la-
belled 2, and A and B labelled 1; edges Aα la-
belled 2, Bα labelled 1. Trivial group.
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The structure

R3

↗ ↘
R1 → R2 R4

↘ ↗
R′3

The arrows correspond to homomorphisms be-
tween the automorphism groups. The first ho-
momorphism measures the non-binarity of the
design; the others measure repeated blocks or
points.
For the DTRS project, at present we consider
only binary designs. We have chosen to use rep-
resentation R3, which is almost universal among
mathematicians. Thus, a block design for us
consists of a set of points, and a list of blocks,
each block a subset of the point set; but re-
peated blocks are allowed.
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Combinatorial and statistical
properties

Combinatorialists like the property of balance:
any two points are contained in a constant num-
ber λ of blocks. They consider various strength-
enings (such as the t-design condition: any t
points are contained in a constant number of
blocks) or weakenings such as “partial balance”.
Statisticians, on the other hand, care about be-
ing able to extract as much information as pos-
sible from the experimental data. This depends
on properties of the information matrix

X>T (I −XbK
−1X>B )XT ,

where XT and XB are the plot-treatment and
plot-block incidence matrices. The eigenvalues
of this matrix, apart from a “trivial” zero, mea-
sure the efficiency of obtaining treatment con-
trasts, and should be as large as possible.
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Robustness

Another feature of a design with real-world rel-
evance is its robustness: does it remain reason-
ably good if data from a few plots, or even a few
blocks, is lost? At least we would like to have
results asserting bounds on the value of some
parameter when a few blocks are lost from the
design.
Robustness is related to design construction.
Suppose we want all designs which are optimal
with respect to some criterion. Rather than list
all designs, calculate the relevant parameter for
each, and choose the best, we’d like to do a back-
track search, and need to be able to prune the
tree. In other words, we need results that say,
if I have chosen some of the blocks and calcu-
lated some parameter, I can put an upper bound
on the value of the parameter however the re-
maining blocks are chosen. This is “dual” to
robustness, and maybe similar techniques can
be developed.
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External Representation of designs

The External Representation is in XML format.
We believe that this is a standardised and well-
established format which should be increasingly
recognised in the foreseeable future.
A design in XML format is human-readable to a
limited extent, but is primarily intended for ex-
change between programs, databases, etc. The
document has a syntax which can be checked; it
also makes some mathematical assertions about
the designs it contains, which can also in prin-
ciple be checked.
The External Representation document con-
tains a specification of the syntax together with
extensive documentation.
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An example

This is a list of designs containing a single de-
sign, the Fano plane, in XML.

<list_of_designs

design_type="block_design" no_designs="1"

pairwise_nonisomorphic="true"

xmlns="http://designtheory.org/xml/ns">

<block_design b="7" id="ls-t2v7k3lambda1-1" v="7">

<blocks ordered="true">

<block><n>0</n><n>1</n><n>2</n></block>

<block><n>0</n><n>3</n><n>4</n></block>

<block><n>0</n><n>5</n><n>6</n></block>

<block><n>1</n><n>3</n><n>5</n></block>

<block><n>1</n><n>4</n><n>6</n></block>

<block><n>2</n><n>3</n><n>6</n></block>

<block><n>2</n><n>4</n><n>5</n></block>

</blocks>

</block_design>

</list_of_designs>

At the first level of indentation, between the
opening and closing tags block_design, we
have indeed specified the design: it has v = 7
points, b = 7 blocks, and the seven blocks are
listed (the first one is [0, 1, 2], and there are tags
to identify each of 0, 1, 2 as natural numbers).
There is also a somewhat meaningless identifi-
cation string for the design.
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Specifying a block design

The specification of a block design is shown be-
low. Properties followed by a question mark
are optional. Remember that all designs are as-
sumed to be binary, so that a block is a set of
points (rather than a multiset). This is an ex-
ample of RNC, a compact and friendly way to
specify the syntax of an XML document. The
previous example included only the required
fields.

block_design = element block_design {

attribute id { xsd:ID } ,

attribute v { xsd:positiveInteger } ,

attribute b { xsd:positiveInteger } ,

blocks ,

point_labels ? ,

indicators ? ,

combinatorial_properties ? ,

automorphism_group ? ,

resolutions ? ,

partial_balance_properties ? ,

statistical_properties ? ,

alternative_representations ? ,

info ?

}
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Designs on the Web: future

At present a version of the external representa-
tion exists (in XML with documentation), and
we have computed all designs of various sizes
and the corresponding optimality parameters.
Future goals include:
• Building the database (first it is necessary to
decide on its format).
• Questions about numerical representation of
algebraic data such as eigenvalues.
• Developing software to construct and analyse
designs including their statistical properties (in-
terfacing with standard algebraic and statistical
computing packages via the external represen-
tation).
• Questions about types of partial balance of
more general designs (for concurrence, variance,
and efficiency).
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Partial balance

An association scheme is a set of zero-one matri-
ces, containing the identity matrix I and sum-
ming to the all-one matrix J , such that each
matrix is symmetric and the span of the ma-
trices is closed under multiplication. A block
design is partially balanced with respect to an
association scheme on the set of treatments if
the number of blocks containing two treatments
depends only on the associate class containing
that pair.
If we replace closure under multiplication by clo-
sure under Jordan product A◦B = 1

2 (AB+BA),
we obtain the weaker notion of a Jordan scheme.
There are also variance and efficiency forms of
balance, which have not been extended satisfac-
torily to partial balance.
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Jordan schemes

Association schemes and, later, Jordan schemes,
were introduced to simplify the calculation of
eigenvalues and eigenspaces of large information
matrices. Association schemes are now well-
studied: Jordan schemes much less so!
In particular, we do not have any example of
a Jordan scheme which is not obtained from a
coherent configuration by symmetrisation. (A
coherent configuration is like an association
scheme but with the requirement of symmetry
weakened to the condition that, if A is in the
set, so is A>; its symmetrisation is obtained by
replacing each pair {A,A>} of non-symmetric
matrices by A+A>.)
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