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Codes

An [n,k] codeover GF(q) is a k-dimensional sub-
space of GF(q)n. Its elements are calledcodewords.
The weight wt(v) of v is the number of non-zero
coordinates ofv. Theweight enumeratorof C is the
polynomial

WC(X,Y) = ∑
v∈C

Xn−wt(v)Ywt(v).

The weight enumerator of a code carries a lot of in-
formation about it; but different codes can have the
same weight enumerator.
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Matroids

A matroid on a setE is a family I of subsets ofE
(calledindependent sets) with the properties
• a subset of an independent set is independent;
• if A and B are independent with|A| < |B|, then
there existsx ∈ B\A such thatA∪{x} is indepen-
dent.
Therankρ(A) of a subsetA of E is the common size
of maximal independent subsets ofA.
Examples of matroids:
• E is a family of vectors in a vector space, indepen-
dence is linear independence;
• E is a family of vectors in a vector space, indepen-
dence is affine independence;
• E is a family of elements in a fieldK, indepen-
dence is algebraic independence over a subfieldF ;
• E is the set of edges of a graph, a set is indepen-
dent if it is acyclic;
• E is the index set of a family(Ai : i ∈ E) of sub-
sets ofX, a setI is independent if(Ai : i ∈ I) has a
system of distinct representatives.
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Matroids and finite geometry

Specialising the first example above, we see that any
set of points in a finite projective space gives rise
to a matroid, which captures a lot of the geometric
properties of the set.
In particular, Segre’s fundamental problem about
the size and classification of arcs in PG(k,q) is
equivalent to the problem of classifying represen-
tations of theuniform matroid Uk+1,n (whose bases
are all(k+ 1)-subsets of ann-set) over GF(q). The
coding theory version of this problem is the classi-
fication of themaximum distance separablecodes
over GF(q).
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Tutte polynomial

TheTutte polynomialof a matroidM is given by

T(M;x,y) = ∑
A⊆E

(x−1)ρ(E)−ρ(A)(y−1)|A|−ρ(A),

whereρ is the rank function ofM.
The Tutte polynomial carries a lot of information
about the matroid; e.g.T(M;2,1) is the number of
independent sets, andT(M;1,1) is the number of
bases (maximal independent sets). But there exist
different matroids with the same Tutte polynomial.
The Tutte polynomial of a matroid generalises the
Jones polynomial of a knot, percolation polynomi-
als, etc.; and also the weight enumerator of a code,
as we will see.
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Matroids and codes

With a linear [n,k] codeC we may associate in a
canonical way a matroidMC on the set{1, . . . ,n}
whose independent sets are the setsI for which the
columns(ci : i ∈ I) of a generator matrix forC are
linearly independent.
Curtis Greene showed that the weight enumerator of
the code is a specialisation of the Tutte polynomial
of the matroid:

WC(X,Y) =Yn−k(X−Y)kT

(
MC;x← X +(q−1)Y

X−Y
,y← X

Y

)
.

I use the notationF(x← t) to denote the result of
substituting the termt for x in the polynomialF .
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Permutation groups

Let G be a permutation group onE, that is, a sub-
group of the symmetric group onE, where|E|= n.
Thecycle indexof G is the polynomialZ(G) in in-
determinatess1, . . . ,sn given by

Z(G) =
1
|G| ∑g∈G

sc1(g)
1 · · ·scn(g)

n .

In particular,

PG(x) = Z(G)(s1← x,si ← 1 for i > 1)

is the p.g.f. for the number of fixed points of a ran-
dom element ofG.
The cycle index is very important in enumeration
theory. Two simple examples:
• Z(G)(s1← x+1,si← 1 for i > 1) is the exponen-
tial generating function for the number ofG-orbits
onk-tuples of distinct points (note that this function
is PG(x+1));
• Z(G)(si← xi +1) is the ordinary generating func-
tion for the number of orbits ofG on k-subsets of
E.
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The Shift Theorem

We require theShift Theorem:

Z(G;si ← si +1) = ∑
A∈PE/G

Z(G(A)),

whereE = {1, . . . ,n}, PE/G denotes a set of orbit
representatives forG acting on the power setPE of
E, andG(A) is the permutation group induced onA
by its setwise stabiliserGA in G.
For example, if we sum the cycle indices of the sym-
metric groups of degreek for k = 0,1, . . . ,n, then we
obtainZ(Sn) with the substitutionsi ← si +1.
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Permutation groups and codes

Let C be an[n,k] code over GF(q). The additive
groupG of C acts as a permutation group on the set
E = GF(q)×{1, . . . ,n} by the rule that the code-
wordv = (v1, . . . ,vn) acts as the permutation

(x, i) 7→ (x+vi , i).

Now each permutation has cycles of length 1 andp
only, wherep is the characteristic of GF(q); and we
have

1
|C|

WC(X,Y) = Z(G;s1← X1/q,sp←Yp/q),

For a zero coordinate inv gives rise toq fixed points,
and a non-zero coordinate toq/p cycles of lengthp.
So the cycle index ofG carries the same information
as the weight enumerator ofC, and is determined by
the Tutte polynomial.
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Base-transitive groups

A basefor a permutation group is a sequence of
points whose pointwise stabiliser is the identity. A
base isirredundantif no point is fixed bu the point-
wise stabiliser of its predecessors.
A permutation group isbase-transitiveif it permutes
its irredundant bases transitively. In this case, the
irredundant bases are the bases of a matroid, indeed
a perfect matroid design; this is a matroid of rankr
for which the cardinalityni of an i-flat (a maximal
set of ranki) depends only oni. In this case the Tutte
polynomial is determined by the numbersn0, . . . ,nr .
All base-transitive groups of rank at least 2 have
been determined by Maund, using CFSG; those of
large rank (at least 7) by Zil’ber, by a geometric ar-
gument not using CFSG.
For base-transitive groups, the cycle index deter-
mines the cardinalities of the flats, and hence the
Tutte polynomial, but not conversely.
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The main problem

As we have seen, there are cases when the Tutte
polynomial determines the cycle index (groups from
codes), and cases where the cycle index determines
the Tutte polynomial (base-transitive groups).
Is there a more general polynomial which deter-
mines both?
The situation we will take is a matroidM and a
groupG of automorphisms ofM.
We would like this polynomial to specialise to allow
us to count orbits ofG on configurations enumer-
ated by the Tutte polynomial ofM (such as bases or
independent sets, or coefficients of the weight enu-
merator of a code).
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Equivariant Tutte polynomial

A first attempt is theequivariant Tutte polynomial,
obtained by averaging the Tutte polynomial as in the
Orbit-Counting Lemma:

T(M,G;x,y)

=
1
|G| ∑g∈G

∑
A⊆E
Ag=A

(x−1)ρE−ρA(y−1)|A|−ρA

=
1
|G| ∑

A⊆E
∑

g∈GA

(x−1)ρE−ρA(y−1)|A|−ρA

=
1
|G| ∑

A∈PE/G

|G|
|GA|
|GA|(x−1)ρE−ρA(y−1)|A|−ρA

= ∑
A∈PE/G

(x−1)ρE−ρA(y−1)|A|−ρA.

Here,PE/G denotes a set ofG-orbit representatives
on the power set ofE. Thus, an alternative descrip-
tion of the equivariant Tutte polynomial is that it
contains the terms in the usual Tutte polynomial but
summed over orbit representatives only.
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Equivariant Tutte polynomial

This polynomial specialises to the number ofG-
orbits on bases, independent sets, spanning sets, and
arbitrary sets, by substituting(1,1), (1,2), (2,1) or
(2,2) for (x,y).
However, it does not solve our problem: the uni-
form matroidU2,3 is the cycle matroid of the com-
plete graphK3, with Tutte polynomialx2 + x+ y;
taking G = S3, the equivariant Tutte polynomial is
x2−x+y. Now the number ofk-colourings ofK3 is
k(k−1)(k−2) (this iskT(M;1− k,0)), and so the
number ofG-orbits onk-colourings is one-sixth of
this number, but the same substitution in the equiv-
ariant Tutte polynomial isk2(k−1).
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Tutte cycle index

Our second attempt is theTutte cycle index, defined
as follows:

ZT(M,G) = ∑
A∈PE/G

uρE−ρAv|G:GA|Z(G(A)).

It has the following specialisations:
• Putu← 1, v← 1: we obtainZ(G;si ← si + 1),

by the Shift Theorem.
• Differentiate with respect tov and putv← 1,

si ← t i (for all i): we obtain

tρET(M;x← u/t +1,y← t +1).

• Putv← 1, si ← t i for all i: we obtain the equiv-
ariant Tutte polynomial (with the same substitution
as in the previous case).
I do not know whether this polynomial gives a solu-
tion to our main problem!
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IBIS groups

The permutation groupG is an IBIS group if all irre-
dundant bases have the same size. (The name is an
acronym for “I rredundantBases ofInvariantSize”.)
Cameron and Fon-Der-Flaass showed that, in an
IBIS groupG, the irredundant bases are the bases
of a matroid (which clearly admitsG as a group of
automorphisms).
In this case, the Tutte cycle index can be defined di-
rectly from the group, since ifb(H) denotes the min-
imum base size of a subgroupH of G, thenρ(A) =
b(G)− b(G(A)), whereG(A) denotes the pointwise
stabiliser ofA.
Obviously, the IBIS groups include the base-
transitive groups as a special case.
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