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Probably you have seen Su Doku puzzles like
this one:

The Times, 14 September 2005

Rating: Fiendish

2 4 8
2 9

1 9
1 9 5 3

3 4
8 3 1 6

8 7
1 5

2 3 5
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Here is the solution:

3 5 9 7 6 2 1 4 8
7 8 6 4 5 1 2 9 3
4 2 1 9 8 3 6 7 5
1 4 2 6 9 5 3 8 7
5 6 3 8 2 7 4 1 9
9 7 8 3 1 4 5 2 6
6 9 4 1 3 8 7 5 2
8 1 5 2 7 6 9 3 4
2 3 7 5 4 9 8 6 1
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Latin squares

You see that
• each number in the puzzle occurs in the

same position in the solution (that is, we just
write numbers in blank squares);

• every row, column, or 3× 3 subsquare of
the solution contains the numbers 1 to 9 each
once.
The second condition is almost the same as
something that mathematicians have studied
for hundreds of years: Latin squares. A Latin
square of order n is an n×n array containing the
numbers 1, . . . , n in such a way that each num-
ber occurs once in each row and once in each
column.
The entries of a Latin square don’t have to be
numbers; any symbols will do. The next slide
shows a 26 × 26 Latin square using the letters
of the alphabet.
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Vigenère square

a b c d e f g h i j k l m n o p q r s t u v w x y z

a A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

b B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

c C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

d D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

e E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

f F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

g G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

h H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

i I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

j J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

k K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

l L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

m M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

n N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

o O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

p P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

r R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

s S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

t T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

u U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

v V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

w W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

x X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
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Caesar cipher

Julius Caesar used a simple cipher to encrypt his
messages. He wrote out the message, and then
replaced each letter with the one three steps on
in the alphabet. Thus the message

SEND THE LEGION AT ONCE

would be encrypted as

VHQG WKH OHJLRQ DW RQFH

The alphabet “wraps round”: that is, the let-
ters XYZ are encrypted as ABC. The decryption
is done by shifting back three places.
This cipher encrypts A as D. If we look at the
row labelled D in the Vigenère square, we see
that it can be used for the encryption.
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Vigenère cipher

The Caesar cipher is not very secure; it is easy
to break by trial and error.
A much better cipher, which was used for diplo-
matic ciphers in Europe for hundreds of years,
is the Vigenére cipher. Choose a keyword, let
us say FOXES. Now, using the Vigenère square,
we encrypt the first letter of the message with
row F, the second with O, . . . , the fifth with S,
the sixth with F again, and so on, repeating the
keyword as often as necessary.
Thus the message

SEND THE LEGION AT ONCE

would be encrypted as

XSKH LMS IIYNCK WS YCKG

To further confuse things, the cipher can be bro-
ken into blocks of a standard length: for exam-
ple XSKH LMSI IYNC KWSY CKGQ, where we use
blocks of four, and add a dummy letter at the
end to complete the last block.
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One-time pad

The advantage of the Vigenère cipher is that
only one keyword has to be remembered by
sender and receiver. But this is also its weak-
ness, and in the nineteenth century a method of
breaking it was discovered by several people, in-
cluding the computer pioneer Charles Babbage.
To make a completely secure cipher, we can use
the principle of the Vigenère cipher, but instead
of using a word for the key, we use a random
string of letters as long as the message. (The
key should be truly random, not just “pseudo-
random” output from a computer.)
Claude Shannon showed that this cipher is un-
breakable if properly used.
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Random Latin square

No cipher is reallly secure, since it is always pos-
sible that the enemy get hold of the key. One
further refinement to the Vigenère method is
to replace the Vigenère square by an arbitrary
Latin square which can be changed from week
to week.
We can’t choose a random Latin square just by
putting entries anywhere and trying to complete
it: we might get stuck, and some squares might
be more likely than others. A good method has
been proposed by Jacobson and Matthews, us-
ing the method of Markov chains from proba-
bility theory.
An example is shown on the next slide.
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A random Latin square

a b c d e f g h i j k l m n o p q r s t u v w x y z

a A I Z W O F X B N E D R L G Q U C K M V Y H P J T S

b Y L R U T H D Z W X S J B C F V K M E Q G I N P O A

c X O B Y P S U A G J Z E C F H D N I K W Q R V L M T

d J H P S A X Y K L Z M N I O R Q V D F T B C W G U E

e G B E Q R T Z F H Y O C J X V M L U N S K A I W D P

f C J Q F K O H V U D T G R A Y B E P Z L N X S M W I

g N K D O F U P S A B W V G Z M L X Q T E C J Y R I H

h H G I C E A K R J Q L O N S B W Z X D Y F V M T P U

i W M S A D Z T U Q R X B P E O F G Y I J H N K C L V

j Q E K L G B M W S P C U Y T J A F H R D I Z O N V X

k P U Y R N E L C D F A M T Q G I H J V O Z K B X S W

l T C V M H G Q D O N U X E R W P B A L I S F J K Y Z

m M T N Z J K A L F G P H S I X R Y W U C V E D O Q B

n O V X N M D I E T U K Q W Y P S R C J B A G H F Z L

o L S T H I C W Y R V E Z D J K X U N P G M Q F B A O

p Z R A E B V S X K I Q L U N D Y W G O F P T C H J M

q B X C K L Y R N P S F I Z H T O M V W U E D Q A G J

r S Y H I X W J O B M G D V K Z E P L C R T U A Q N F

s E D F V Q P N G Z A B W O U I J T R Y H X M L S K C

t K Z G X Y M E J I L V F H P C T A S Q N O W U D B R

u R Q M D C I B P V W H S F L N Z J T X A U O G Y E K

v D F J T U L G I M C N P Q V A K O B H Z W S X E R Y

w U P O B Z Q V H C K R Y M W S G D E A X J L T I F N

x V W L P S J F T X H Y A K D E N I O G M R B Z U C Q

y F A U J W N O M E T I K X B L C Q Z S P D Y R V H G

z I N W G V R C Q Y O J T A M U H S F B K L P E Z X D
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Addition and multuplication

The Vigenère square is a Latin square with a
particularly simple structure: each row shifts
along one place, and the last entry comes back
to the start. This can be explained another
way, using modular arithmetic. If, instead of the
letters A,...,Z, we use the numbers 0, . . . , 25,
then the entry in row i and column j of the
square is i + j, where the addition is mod 26:
that is, instead of saying 11 + 18 = 29, we put
11 + 18 = 3. (That is, if the sum is 26 or more,
we subtract 26 from the answer; in other words,
we take the remainder on dividing by 26.)
The same construction works with any number
n in place of 26, and always gives us a Latin
square with the same structure.
What happens if we use multiplication mod n
rather than addition?
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Examples: integers mod 5 and 6

n = 5

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

n = 6

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1
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Rings and fields

Since 0×x = 0 for all x, we have to leave out the
row and column zero. We see that, for n = 5,
the other rows do give us a Latin square; for
n = 6 they don’t (we get 0 appearing in other
rows, and we get elements like 2, 3, 4 repeated).
A system where we can add, subtract, and mul-
tiply is called a ring. Thus, the integers mod n
form a ring. The addition table of a ring is al-
ways a Latin square.
If we can also divide, then the system is called a
field. It is known that the integers mod n form
a field if and only if n is a prime number.
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Experimental design

Suppose that we have to test nine different types
of pesticides on apple trees. We have an orchard
with 81 trees planted in a square grid.
We could just put pesticide 1 on the trees in
the first row, 2 on the second row, etc. But,
unknown to us, the orchard is on a hillside, and
trees lower down the slope tend to produce more
apples; so we couldn’t tell whether the experi-
mental results show a difference in the pesticides
or just the difference caused by the slope.
Similarly, we could put pesticide 1 on the first
column, and so on; but there is a road on one
side of the orchard and a stream on the other,
and these could also affect production.
In these circumstances we should use a Latin
square. This will ensure that the nine pesticides
are equally affected by differences in height and
in distance from the road or the stream.
The next slide shows an experiment on trees
designed using a Latin square.
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An experiment in Bettgelert Forest, Wales, de-
signed by R. A. Fisher.
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Su Doku in experimental design

The easiest Latin square is the addition table
of integers mod 9: label the rows, columns and
pesticides by 0, . . . , 8 and put pesticide i + j on
the tree on row i and column j. But, unknown
to us, there is a fertile patch in the middle of
the field (in rows and columns 3, 4, 5). Thus
pesticide 8 would go on three trees in the fertile
spot, 7 and 0 on two, 6 and 1 on just one, and
the others would not occur at all.
If instead we use the solution to a Su Doku, we
fix this problem too, since every pesticide will
be used on just one tree in the fertile patch. The
extra constraint “mixes” the numbers up better.
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Solving a Su Doku

Let us come back to the question: How do you
solve a Su Doku?
Look back at the original puzzle. We’ll take a
look at the 3×3 square in the bottom left of the
puzzle, and number its cells (i, j), where i and
j take the values 1, 2, 3. The five blank squares
are (1, 1), (1, 2), (1, 3), (2, 1) and (3, 3).
Cell (1, 1) has 8 and 7 in the same row, 1 and
2 in the same column, and 1, 2, 3, 5 in the same
subsquare. So the number we put there must be
one of 4, 6, 9. Similarly we find the possibilities
for (1, 2) are 4, 6, 9, for (1, 3) also 4, 6, 9), for
(2, 1) are 4, 6, 7, 8, 9, and for (3, 3) are 4, 6, 7, 9.
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Hall’s Theorem

Suppose you have to arrange marriages between
n boys and n girls. You can only marry a boy
and girl if they already know each other. Is it
possible to arrange all the marriages?
If the marriages can be arranged, then any
group of k girls must between them know at
least k boys. The mathematician Philip Hall
proved that this necessary condition is also suf-
ficient : that is, if every set of girls satisfies this
condition, then the marriages can be arranged.
This is Hall’s marriage theorem.
A set of k girls who between them know exactly
k boys is called a critical set. If a critical set ex-
ists, then these girls must be married off to the
boys they know, who are then unavailable for
marrying other girls, and can be deleted from
their lists.
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An example

We encode the subsquare of the Su Doku puzzle
as a marriage problem. Here the boys are the
available numbers, and the girls are the empty
cells. Placing a number in each cell is equivalent
to marrying off all the girls.
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First reduction

We see that the set G11, G12, G13 is critical:
these three girls between them know only boys
B4, B6, B9. So we can remove these boys from
the acquantances of the other two girls.
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Second reduction

Now G33 is critical since she knows only B7, so
we can delete B7 from G12’s options.
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Now we see that B7 must marry G33 and B8

must marry G21. So we can put the entry 7 in
box (3, 3) and the entry 8 in box (2, 1) in the
puzzle.
Continue in this way until the solution is found.
Disclaimer: This method does not solve ev-
ery Su Doku puzzle: the mathematician Gordon
Royle has found examples where it fails. But it
works on every example I have tried from the
newspapers.
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