Some counting problems related to permutation groups

Peter J. Cameron

School of Mathematical Sciences Queen Mary and Westfield College London E1 4NS, U.K. p.j.cameron@qmw.ac.uk

1

2

Three counting problems: 1

A *relational structure M* consists of a set *X* and a family of relations on *X*.

The *age* of M is the class of finite relational structures (in the same language) embeddable in M.

Problem. How many (a) *labelled*, (b) *unlabelled* structures in Age(M)?

[Labelled structures have the element set $\{1, 2, ..., n\}$. Unlabelled structures are isomorphism types.]

3

4

'I count a lot of things that there's no need to count,' Cameron said. 'Just because that's the way I am. But I count all the things that need to be counted.'

Richard Brautigan, The Hawkline Monster

Three counting problems: 2

A permutation group G on a set X is *oligomorphic* if G has only finitely many orbits on X^n , for all n: equivalently, on the set of n-subsets of X, or on the set of n-tuples of distinct elements of X.

Problem. How many orbits on (a) *n*-sets, (b) *n*-tuples of distinct elements, (c) all *n*-tuples?

Three counting problems: 3

Let *T* be a complete consistent theory in the first-order language *L*. An *n*-type over *T* is a set *S* of formulae in *L* with free variables x_1, \ldots, x_n , maximal subject to being consistent with *T*.

We say that *T* is \aleph_0 -categorical if it has a unique countable model (up to isomorphism). This is equivalent to there being only finitely many *n*-types for each *n* (the theorem of Engeler, Ryll-Nardzewski and Svenonius).

Problem. How many n-types?

5

Connections: 12

The structure *M* is *homogeneous* if any isomorphism between finite induced substructures of *M*.

Fraïssé's Theorem: A class C of finite structures is the age of a countable homogeneous structure M if and only if it is closed under isomorphism, closed under taking induced substructures, contains only countably many members up to isomorphism, and has the *amalgamation property*.

If these conditions hold, then M is unique up to isomorphism. We call C a *Fraïssé class* and M its *Fraïssé limit*.

7

8

An example

Let *M* be the unique countable dense totally ordered set \mathbb{Q} .

By *Cantor's Theorem*, its theory is \aleph_0 -categorical.

Its age consists of all finite ordered sets: there is one unlabelled structure, and n! labelled structures, on n elements.

Its automorphism group is transitive on *n*-sets for every *n*.

Connections: 12

There is a natural topology on the symmetric group of countable degree (pointwise convergence) with the properties that

(a) a subgroup is closed if and only if it is the automorphism group of a homogeneous relational structure;

(b) the closure of a subgroup is the largest overgroup with the same orbits on X^n for all *n*.

Hence counting labelled/unlabelled structures in a Fraïssé class is equivalent to counting orbits of a permutation group on *n*-sets/*n*-tuples of distinct elements.

Connections: 23

The theorem of Engeler, Ryll-Nardzewski and Svenonius says more than we have seen so far:

(a) for a countable structure M, the theory of M is \aleph_0 -categorical if and only if Aut(M) is oligomorphic;

(b) if these condition holds, then all *n*-types are realised in M, and two *n*-tuples realise the same type if and only if they are in the same orbit of Aut(M).

Thus, if *T* is \aleph_0 -categorical, counting *n*-types of *T* is equivalent to counting orbits of Aut(T) on *n*-tuples.

9

Three counting sequences

Which sequences occur? Let \mathfrak{f} and \mathfrak{F} be the sets of f- and F-sequences for oligomorphic groups. A compactness argument shows that both are closed in $\mathbb{N}^{\mathbb{N}}$ in the topology of pointwise convergence, so the conditions should be local ones!

Theorem: $f_{n+1} \ge f_n$ for all *n*. (Similarly $F_{n+1} \ge F_n$ but this is trivial.)

Example: total orders. $f_n = 1$, $F_n = n!$, and

$$F_n^* = \sum_{k=1}^n S(n,k)k!$$

is the number of *labelled preorders* on *n* points.

11

Three counting sequences

Let G be an oligomorphic permutation group on X. Let

 $f_n(G) =$ no. of *G*-orbits on *n*-subsets;

 $F_n(G)$ = no. of *G*-orbits on *n*-tuples of distinct elements;

 $F_n^*(G) =$ no. of *G*-orbits on *n*-tuples.

Then f_n and F_n count unlabelled and labelled *n*-element structures in a Fraïssé class, while F_n^* counts *n*-types in an \aleph_0 -categorical theory. We have

 $F_n^* = \sum_{k=1}^n S(n,k)F_k$, where S(n,k) is the Stirling number of the second kind;

 $f_n \leq F_n \leq n! f_n.$

10

Growth rates: examples

Polynomial: for example, $f_n(S^k) = \binom{n+k-1}{k-1}$ is a polynomial of degree k-1 in n.

Fractional exponential: e.g. $f_n(S \operatorname{Wr} S) = p(n)$, the partition function (roughly $\exp(n^{1/2})$).

Exponential: e.g. for boron trees, $f_n \sim an^{-5/2}c^n$, where $c = 2.483\cdots$.

Another example: $f_n(S_2 \operatorname{Wr} A) = F_n$, the *n*th Fibonacci number.

Factorial: e.g. two independent total orders, $f_n = n!$.

Exponential of polynomial: e.g. graphs, $f_n \sim 2^{n(n-1)/2}/n!$.

12

Boron trees

A boron tree is a tree in which all vertices have valency 1 or 3. The leaves ('hydrogen atoms') of a boron tree carry a quaternary relation. The class of such relational structures is a Fraïssé class.

Smoothness

Sequences arising from groups should grow smoothly. In particular, for polynomial growth, $\log f_n / \log n$ should tend to a limit; for fractional exponential, $\log \log f_n / \log n$ for fractional exponential, $\log f_n / n$ for exponential, etc. *How do you state a general conjecture*?

A specific question. Define an operator *S* on sequences by Sa = b if

$$\sum_{n=0}^{\infty} b_n x^n = \prod_{k=1}^{\infty} (1 - x^k)^{-a_k}$$

Is it true that, if f = Sa counts orbits, then a_n/f_n tends to a limit (possibly 0 or 1)?

15

Growth rates: restrictions

Pouzet: For homogeneous binary relational structures, either

 $c_1 n^d \leq f_n \leq c_2 n^d$ (for some $d \in \mathbb{N}$, $c_1, c_2 > 0$), or

 f_n grows faster than polynomially.

Macpherson: In the latter case, $f_n > \exp(n^{1/2-\varepsilon})$ for $n > n_0(\varepsilon)$.

Macpherson: If *G* is primitive, then either $f_n = 1$ for all *n*, or $f_n > c^n$ for all sufficiently large *n*, where c > 1.

Smoothness

Remark 1. If $f = (f_n(G))$ then $Sf = (f_n(GWrS))$. Similar sequence operators can be defined with any oligomorphic group replacing *S*. The same conjecture could be made for any such operator. Similarly one could replace wreath products by direct products.

Remark 2. The operator *S* has various interpretations (see later).

13

An algebra

Let *X* be an infinite set. For any non-negative integer *n*, let V_n be the set of all functions from the set of *n*-subsets of *X* to \mathbb{C} . This is a vector space over \mathbb{C} .

Define

$$\mathcal{A} = \bigoplus_{n \ge 0} V_n,$$

with multiplication defined as follows: for $f \in V_m$, $g \in V_n$, let fg be the function in V_{m+n} whose value on the (m+n)-set A is given by

$$fg(A) = \sum_{\substack{B \subseteq A \\ |B| = m}} f(B)g(A \setminus B).$$

This is the *reduced incidence algebra* of the poset of finite subsets of *X*.

17

Integral domain?

I *conjecture* that, if G has no finite orbits, then \mathcal{A}^G is an integral domain.

This would have as a consequence a smoothness result for the sequence (f_n) , in view of the following result, in view of the following:

Let $\mathcal{A} = \bigoplus V_n$ be a graded algebra which is an integral domain, with $\dim(V_n) = a_n$. Then $a_{m+n} \ge a_m + a_n - 1$ for all m, n.

19

Polynomial algebra?

Let *M* be the Fraïssé limit of *C*, and G = Aut(M).

Under the following hypotheses, it can be shown that \mathcal{A}^{G} is a polynomial algebra:

• there is a notion of *disjoint union* in *C*;

• there is a notion of *involvement* on the *n*-element structures in *C*, so that if a structure is partitioned, it involves the disjoint union of the induced substructures on its parts;

• there is a notion of *connected structure* in *C*, so that every structure is uniquely expressible as the disjoint union of connected structures.

The polynomial generators of A(M) are the characteristic functions of the connected structures.

An algebra

If *G* is a permutation group on *X*, let \mathcal{A}^G be the subalgebra of *A* of the form $\bigoplus_{n\geq 0} V_n^G$, where V_n^G is the set of functions fixed by *G*.

If *G* is oligomorphic, then $\dim(V_n^G)$ is equal to the number $F_n(G)$ of orbits of *G* on *n*-sets.

Polynomial algebra?

Note that:

- If the sequence *a* = (*a_n*) counts the polynomial generators of degree *n* in a polynomial graded algebra, then *Sa* gives the dimensions of the homogeneous components;
- If the sequence $a = (a_n)$ counts connected structures in a class with a good notion of connectedness, then *Sa* counts arbitrary structures in the class.

A little problem

Now it follows from general results that \mathcal{A}^H is an integral domain.

Is it a polynomial algebra?

Mallows and Sloane showed that two-graphs and even graphs on n points are equinumerous (but there is no natural bijection).

Hence, if \mathcal{A}^H is a polynomial algebra, then the number of polynomial generators of degree *n* is equal to the number of Eulerian (connected even) graphs on *n* vertices.

23

21

A little problem

There is a unique countable homogeneous graph R containing all finite graphs. This is the *random graph* of Erdős and Rényi. Let G = Aut(R).

Since for graphs we have appropriate notions of connectedness and involvement, the algebra \mathcal{A}^G is a polynomial algebra, whose generators correspond to connected graphs.

The group G has a transitive extension H, the automorphism group of the countable homogeneous universal two-graph.

[A *two-graph* is a collection \mathcal{T} of 3-subsets of a set X having the property that any 4-subset of H contains an even number of members of \mathcal{T} .]