
Designs on the Web

Peter J Cameron

School of Mathematical Sciences

Queen Mary, University of London

London E1 4NS, U.K.

p.j.cameron@qmul.ac.uk

Joint work with R. A. Bailey, P. Dobcsányi,

J. P. Morgan and L. H. Soicher

http://www.designtheory.org

1



The DTRS project

We are in the process of developing a

web-based Design Theory Resource Server

(DTRS) for combinatorial and statistical

design theory. One critical element is our

External Representation of Designs which will

be used to store designs and their properties

in a standard platform-independent manner

(external means external to any software).

This will allow for the straightforward

exchange of designs between various

computer systems, including databases and

web servers, and combinatorial, group

theoretical and statistical packages. The

external representation will also be used for

outside submissions to our design database.

A beta-release of the External Representation

with documentation is now available.

2



What is a design?

We have a set T of treatments which we wish

to compare, and a set Ω of plots or

experimental units to which the treatments

may be applied. A design is a function

F : Ω → T (so that F (ω) is the treatment

applied to plot ω).

If T and Ω are completely unstructured,

simply use each treatment the same number

of times (as near as possible).

The existence of structure on T and Ω

complicates matters!

3



Treatment and plot structures

For example, one treatment may be a
placebo, or the “standard” treatment against
which the others are to be compared; or the
treatments may have a number of factors
which can be applied at different levels
(fertiliser dose, watering, planting time, etc.)
These are important but for now we disregard
them. If T is homogeneous, we can replace
the function F by a partition of Ω (and assign
one treatment to each part).

Plot structure arises because the set of plots
is not homogeneous. For example, we may
have several plots on each of a number of
farms in different geographical areas; soil
fertility or moisture content may vary across
a field; one plant may shade another;
experiments over a period of time are subject
to daily or seasonal effects; and drugs may
have carry-over effects.

4



Block designs

The simplest plot structure is a system of
blocks, where plots in a block are more alike
than those in different blocks (as in the farms
example). Thus, the blocks form a partition
of Ω. So a block design consists of a set Ω
with two partitions, corresponding to
treatments and blocks.

The block partition is given, and we have to
choose the treatment partition so that
information can be recovered about the
treatments as efficiently as possible – this
means that the variances of the estimators of
treatment differences should be as small as
possible.

In the worst case, if we applied each
treatment on only one farm, we couldn’t
separate treatment effects from geographical
effects.

5



Which block design?

If the number of treatments is equal to the
number of plots in a block, we could ensure
that each treatment occurs once in each
block. This is a complete block design, and is
clearly the best we can do. Usually,
constraints don’t allow this.

Typically, the block size k is smaller than the
number v of treatments, so that the block
design is incomplete. In this case, if there is a
block design which is balanced (so that any
two treatments occur together in a block
exactly λ times), then it is the best design to
use, with respect to all practical criteria. This
why balanced incomplete-block designs
(BIBDs, or 2-designs) are so important. But
often it is the case that no such design exists,
and indeed there may be no design which is
uniformly best. In this case the choice of
design might depend on other factors.

6



Representations of block designs

R1: A set of plots with two partitions (as
above).

R2: Bipartite graph, vertices are points
(treatments) and blocks, joined if the
treatment appears in the block, labelled with
the number of times it appears.

R3: Set of points, each block is a multiset of
points, so the blocks form a multiset of
multisets.

R′
3: Dual to R3.

R4: Bipartite graph with vertices and edges
labelled. Edge labels as above; vertex labels
denote the number of repetitions of blocks
and/or points.

The design is called binary if no treatment
occurs more than once in a block (so edge
multiplicities are all 1).

7



Example

Suppose we have six plots, 1,2,3,4,5,6,
which fall into two blocks α = {1,2,3,4} and
β = {5,6}. We have two treatments A and B,
and apply A to plots 1,3,5 and B to plots
2,4,6. These two partitions form
representation R1. It has 8 automorphisms.

R2: Complete bipartite graph on vertices
{A,B} and {α, β}, with multiplicies 2 on Aα

and Aβ and 1 on the other two edges. This
has 2 automorphisms.

R3: Point set {A,B}, blocks [A,A,B,B] and
[A,B]. Again 2 automorphisms.

R′
3: Point set {α, β}; block {α, α, β} with

multiplicity 2. Trivial automorphism group.

R4: Complete bipartite graph with vertex α

labelled 2, and A and B labelled 1; edges Aα
labelled 2, Bα labelled 1. Trivial group.

8



The structure

R3
↗ ↘

R1 → R2 R4
↘ ↗

R′
3

The arrows correspond to homomorphisms

between the automorphism groups. The first

homomorphism measures the non-binarity of

the design; the others measure repeated

blocks or points.

For the DTRS project, at present we consider

only binary designs. We have chosen to use

representation R3, which is almost universal

among mathematicians. Thus, a block design

for us consists of a set of points, and a list of

blocks, each block a subset of the point set;

but repeated blocks are allowed.

9



External Representation of designs

The External Representation (which is not yet

complete) is in XML format. We believe that

this is a standardised and well-established

format which should be increasingly

recognised in the foreseeable future.

A design in XML format is human-readable to

a limited extent, but is primarily intended for

exchange between programs, databases, etc.

The document has a syntax which can be

checked; it also makes some mathematical

assertions about the designs it contains,

which can also in principle be checked.

The External Representation document

contains a specification of the syntax

together with extensive documentation.

10



An example

This is a list of designs containing a single

design, the Fano plane, in XML.

<list_of_designs
design_type="block_design" no_designs="1"
pairwise_nonisomorphic="true"
xmlns="http://designtheory.org/xml/ns">

<block_design b="7" id="ls-t2v7k3lambda1-1" v="7">
<blocks ordered="true">

<block><n>0</n><n>1</n><n>2</n></block>
<block><n>0</n><n>3</n><n>4</n></block>
<block><n>0</n><n>5</n><n>6</n></block>
<block><n>1</n><n>3</n><n>5</n></block>
<block><n>1</n><n>4</n><n>6</n></block>
<block><n>2</n><n>3</n><n>6</n></block>
<block><n>2</n><n>4</n><n>5</n></block>

</blocks>
</block_design>

</list_of_designs>

At the first level of indentation, between the opening
and closing tags block_design, we have indeed specified
the design: it has v = 7 points, b = 7 blocks, and the
seven blocks are listed (the first one is [0,1,2], and
there are tags to identify each of 0, 1, 2 as natural
numbers). There is also a somewhat meaningless
identification string for the design.

11



Specifying a block design

The specification of a block design is shown

below. Properties followed by a question

mark are optional. Remember that all designs

are assumed to be binary, so that a block is a

set of points (rather than a multiset). This is

an example of RNC, a compact and friendly

way to specify the syntax of an XML

document. The previous example included

only the required fields.

block_design = element block_design {
attribute id { xsd:ID } ,
attribute v { xsd:positiveInteger } ,
attribute b { xsd:positiveInteger } ,
blocks ,
point_labels ? ,
indicators ? ,
combinatorial_properties ? ,
automorphism_group ? ,
resolutions ? ,
partial_balance_properties ? ,
statistical_properties ? ,
info ?

}

12



Indicators

Indicators include repeated_blocks,

resolvable, equireplicate,

constant_blocksize, t_design, connected,

variance_balanced, efficiency_balanced,

partially_balanced, cyclic, one_rotational.

They take the value “true”, “false”,

“unknown” or sometimes “not applicable”.

There may be also some extra information;

e.g. for t_design, the indicator gives the

maximum value of t.

13



Other tags

Combinatorial properties include a range of

t-design properties likely to be of interest to

mathematicians. These include Steiner

system, square design, etc. We also include

information about α-resolvability, t-wise

balance, etc.

Under automorphism group we store

generators for the automorphism group,

various properties (transitivity, primitivity,

multiple transitivity, stratifiability, etc.), and

the cycle types of elements together with a

representative element for each cycle type.

If a design is resolvable, we can in principle

store representatives of the isomorphism

classes of resolutions (two resolutions being

isomorphic if one is obtained from the other

by applying an automorphism of the design).

14



Other tags, continued

Among the statistical properties, we include
pairwise and canonical variances, how the
design performs on a number of optimailty
criteria, the efficiency factors of the design,
and robustness properties. (Statistical
robustness of a block design is defined as its
ability to maintain desirable statistical
properties under loss of individual plots or
entire blocks. A catastrophic result of such a
loss is that the design become disconnected.
Less catastrophic are losses in the
information provided by the design, as
measured by various optimality criteria.)

If a design is partially balanced, then there is
a unique coarsest association scheme with
respect to which this is the case, called the
balancer of the design; we will store this
association scheme and some of its properties
and refinements.

15



Lists of designs

The outermost tag is list_of_designs. Here

we can store such information as “these are,

up to isomorphism, all designs with

such-and-such properties” (or maybe “these

designs are pairwise non-isomorphic but we

don’t know if the list is complete”), or “these

designs were constructed by X using software

Y”. Other comments can also be added.

Each design in the list is described by the

earlier specification.

Any document which is exchanged by systems

following this specification should be a

list_of_designs.

16



Where next?

We would like your feedback on what we have

done. Have we omitted something crucial?

We intend to extend this specification, first

to handle non-binary block designs, and then

to handle more general types of designs

(row-column designs, factorial designs,

semi-Latin squares, etc.)

We are also producing software to make it

easy to read and write correctly specified

designs, and to interface with combinatorial

and statistical software (in the first instance

GAP and R).

17



www.designtheory.org

One of the main features of the website will
be a database of designs, which can be
searched according to the criteria in the
specification and input or output in XML
format.

Leonard Soicher is producing a GAP share
package for computing with designs; it will
have the ability to output designs matching
our specification. This software has already
been used in a couple of research projects,
including finding optimal regular graph
designs.

Take a look at the Encyclopaedia of Design
Theory in the library (and please feel free to
contribute to it!).

Finally, please sign up to the mailing lists,
and get involved in the discussion about how
the project should proceed.

18


