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Coding theory

We wish to send words of length n over an alphabet
A with |A|= q over a noisy channel where errors can
occur.

We assume that, with high probability, not too many
errors occur during transmission of a word.

The strategy is to send words from a code C, a
subset of An. We require:

(a) large minimum distance d: if d ≥ 2e+1, we can
correct up to e errors;

(b) many codewords (subject to (a)): the
transmission rate is logq |C|/n;

(c) computationally efficient encoding and decoding
(subject to (a) and (b)).
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Factorial design

We are investigating n factors which can affect the
yield of some process. The ith factor can take any
one of a set Ai of levels, with |Ai|= qi.

We assume that only the interactions of small
numbers of factors affect the yield significantly.

We impose the structure of an abelian group on Ai,
and test treatment combinations lying in a subgroup
B of A1×·· ·×An.
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Factorial design

Let C be the annihilator of B in A∗1×·· ·×A∗n. (Here A∗i
is the group of characters of Ai; so C is the set of all
characters of Ai× . . .×An which are trivial on B.)

Elements of C represent combinations of treatments
which are confounded in the experiment. (For
example, if an element of C has support in
A∗i ∪A∗j ∪A∗k, then the interaction of factors j and k
cannot be distinguished from the main effect of
factor i.)
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Factorial design

We want

(a) Large weight in C so that potentially significant
combinations of factors are not confounded;

(b) Few trials (subject to (a)): trials are expensive!
This means small B, and so large C: note that

|C|= q1 · · ·qn
|B|

.

(c) simple description which can be explained to
experimenters and for which results can be analysed
(subject to (a) and (b)).
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Comparison

Design theorists and coding theorists are both
looking for subsets C of A1×·· ·×An with large
minimum distance and large cardinality.

Coding theorists have n large, all Ai of the same size
(almost always 2), and don’t insist on group structure
(though it does help to use a linear code).

Statisticians have n fairly small, varying alphabet
size, and do require group structure.

Hamming codes satisfy both specifications!
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Hamming codes

Let V = GF(q)k. Partition the non-zero vectors in V
into equivlence classes, where two vectors are
equivalent if one is a non-zero scalar multiple of the
other. There are (qk−1)/(q−1) equivalence classes.

Choose one vector from each equivalence class, and
let H be the k× (qk−1)/(q−1) matrix having these
vectors as columns. (For simplicity, take all vectors
whose first non-zero entry is 1.) Then any two
columns of H are linearly independent.

The code C with parity check matrix H thus has
minimum weight 3 and so is 1-error-correcting. This
is the Hamming code H(k,q).
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Fisher’s Theorem on Minimal Confounding
Fisher (1942) proved that:

A 2n factorial scheme can be arranged in 2n−p

blocks of 2p plots each, without confounding either
main effects or 2-factor interactions, provided that
n < 2p.

Subsequently (1945), he generalized this theorem and proved
that:

A πn factorial scheme can be arranged in πn−p

blocks of πp plots each, without confounding either
main effects or 2-factor interactions, provided that

n≤ (πp−1)/(π−1).

D. J. Finney, An Introduction to the Theory of Experimental

Design, University of Chicago Press, Chicago, 1960.

(Here π is a prime power.)
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Coding theory with mixed alphabets

C is a code of length n and minimum distance d over
alphabets of size q1, . . . ,qn. Let e = b(d−1)/2c, and
assume that q1 ≤ ·· · ≤ qn.

Sphere-packing bound:

|C| ≤

n

∏
i=1

qi

e

∑
k=0

∑
i1<···<ik

k

∏
j=1

(qi j−1)

.

Singleton bound:

|C| ≤
n−d+1

∏
i=1

qi.

Plotkin bound: Let

α =
n

∑
i=1

(1−1/qi).

If d > α then |C| ≤ d/(d−α).
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An example

Let n = 5 and let the alphabet sizes be 2,2,2,2,4.
Take d = 3.

The sphere-packing bound gives

|C| ≤ 2 ·2 ·2 ·2 ·4
1+1+1+1+1+3

= 8.

The Singleton bound gives

|C| ≤ 2 ·2 ·2 = 8.

The Plotkin bound:

α =1
2+

1
2+

1
2+

1
2+

3
4=

11
4 <3,

so |C| ≤ 3/(3− 11
4 ) = 12.
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An example

Take A1 = . . .= A4 = {0,1} (the cyclic group of
order 2) and A5 = {0,a,b,c} with a+b+ c = 0 (the
Klein group of order 4).

Then C is

00000

11110

0011a

1100a

0101b

1010b

0110c

1001c

12
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Codes and projective spaces

Let A be a k×n matrix over GF(q). Assume that no
two columns are linearly dependent, and that A has
rank k.

(a) A is the parity check matrix of a [n,n− k] code

C = {v ∈ GF(q)n : Av> = 0}.

Elementary row operations don’t affect C; column
permutations and scalar multiplications replace it by
an equivalent code (metric properties are
unaffected). The code C has minimum weight at least
3, so is 1-error-correcting. The corresponding
factorial design has qk treatments.
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Codes and projective spaces

(b) The columns of A are a set S of n points in
projective space PG(k−1,q). Elementary row
operations induce collineations of the projective
space, while column permutations don’t change S.
The set S spans PG(k−1,q).

So 1-error-correcting codes (up to equivalence)
correspond naturally to spanning subsets of
projective space (up to collineations).

The correspondence between codes and projective
spaces allows many properties to be transferred back
and forth:
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Codes and projective spaces

1. The Hamming codes correspond to the entire
projective space. The code/projective space
connection can be regarded as a generalisation of
the construction of Hamming codes.

2. Supports of words of the dual code correspond to
complements of hyperplane sections of S.

3. (Bose 1947) MDS codes (those which meet the
Singleton bound) correspond to arcs in projective
space. (This, and a bound on the size of arcs in
projective planes, are in Bose’s paper on factorial
designs.)

4. (Greene 1976) The weight enumerator of the code
is a specialisation of the Tutte polynomial of the
matroid represented by the matrix. Hence the
MacWilliams identities follow from matroid duality.
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An application

We are given a set of n objects, containing one
‘active pair’.

We can test any subset: the test is positive precisely
when the subset contains both members of the active
pair.

How many tests are required to identify the active
pair?

(This problem arises in PCR tests in genetics: I
learned about it from G. Gutin.)
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An application

Suppose that n = 2d−1. Let H be the 2d×n parity
check matrix of a 2-error-correcting BCH code.

For each row of H, test the sets of positions where 0s
occur and where 1s occur in that row. From these
tests we can determine the syndrome and hence the
active pair.

The number of tests is 4d, which is just twice the
information-theoretic lower bound. (And, if we get a
positive result from a subset, we don’t have to test
the complementary subset.)
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